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SUMMARY

Numerical models based on the conservative formulation of the shallow water equations in finite volumes
have recently paid special attention to the convenience of a unified discretization of bed slope source
terms and pressure momentum fluxes in order to ensure a correct representation of both in steady states.
In cases of steady shallow water flow with non-zero velocity, the discrete balance must include the friction
term and the good equilibrium of the discrete solution must be revisited. Besides, there is the question
of stability. The presence of relatively large friction terms reduces considerably the stability region of
the explicit schemes (with either separate or unified discretization). Implicit formulations strongly help to
relax the friction related stability restrictions but are only feasible in the context of separated discretization.
Therefore, a strategy to blend both approaches (unified explicit and separated implicit) is presented that
ensures both a perfect balance in steady state and numerical stability in unsteady cases in the presence
of friction terms. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Gravity and friction are the main forces driving open channel flows. When using the shallow water
model in hydraulic simulation, these forces participate in the dynamic equation as sources/sinks
of momentum. Due to the shallow water model hypothesis [1] the gravity force is responsible
for both the vertical pressure distribution and the longitudinal water body weight components. In
the conservative formulation of the shallow water equations the pressure terms are formulated as
dependent on the water depth spatial changes and are included in the definition of the momentum
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flux. Numerical models based on the conservative formulation of the shallow water equations in
finite volumes have recently paid special attention to the convenience of a unified discretization of
bed slope source terms and pressure momentum fluxes in order to ensure a correct representation
of both in steady states [2–5]. The so-called C-property [6, 7] was first stated in the context of
finite volume methods for the conservative shallow water equations as a required condition for
numerical schemes well suited to reproduce the discrete double action of the gravitational force
in motionless volumes of water. In cases of steady shallow water flow with non-zero velocity, the
pressure and bed slope gravity related terms must be balanced with the friction term and the good
equilibrium of the discrete solution must be revisited.

The mathematical modeling of the friction term is commonly done using semi-empirical formulae
derived from steady cases and low relative roughness that are open to improved formulations [8]
and supported by laboratory experimentation. Independent of the friction model chosen, when
moving to the discrete level, numerical experimentation tells us that careless discretization of such
formulae may lead to a wrong equilibrium in steady state [9] and to oversize and inadequate values
for the discrete friction forces, specially in wet/dry fronts [9–11] that can interfere with the stability
of the numerical solution. The current and recommended tendency to avoid numerical errors (lack
of balance in the solution and/or oscillations) arising from the friction terms is the remedy of
using an implicit treatment of the source term. However, even though implicit discretization of the
friction terms may ensure the stability of the numerical solution, a detailed analysis shows that, in
steady state, this discretization will never produce an exact balance among fluxes and source terms
[12]. It has been proved in one-dimensional (1D) shallow water models that the unified treatment
[9] of all the terms, including the friction source term is the only way to ensure Property-C [13]
even in steady cases with non-zero velocity. As this treatment is done explicitly, it must be supplied
with a condition over the maximum cell dimensions [9] or over the maximum allowable time step
[12] in order to guarantee stability.

Recently, [9] a method where the friction source term was truncated when necessary to avoid
oscillations in order to avoid restrictions over the cell size or over the time step size was developed.
This technique was based on the idea that friction alone can, at most, stop the fluid during one time
step but never change the sign of the discharge. This concept cannot be easily extrapolated to the
two-dimensional (2D) approach, as there is not a main direction, and also because the grid/time
step size reduction can lead to poor computational efficiency in practical applications.

For these reasons it is desirable to find a technique that ensures both a perfect balance in
steady state and numerical stability in unsteady cases in the presence of non-zero velocities and
friction terms. A technique that combines the implicit pointwise and the explicit upwind friction
discretization is proposed in this work trying to achieve computationally efficient simulations. First,
the mathematical model will be presented together with two possible friction term formulations.
Then, the finite volume numerical technique will be outlined and the two options for implicit
pointwise or explicit upwind friction term discretization will be presented and compared using
some steady-state open channel flow test cases. One unsteady test case of tsunami run-up will be
used to illustrate the technique proposed.

2. MATHEMATICAL MODEL/GOVERNING EQUATIONS

The 2D shallow water equations, which represent mass and momentum conservation in a plane, can
be obtained by depth averaging the Navier–Stokes equations. Neglecting diffusion of momentum
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due to viscosity and turbulence, wind effects and the Coriolis term, they form a system of equa-
tions [14]:

�tU+�xF(U)+�yG(U)=S(U, x, y) (1)

with

U = (h,qx ,qy)
T

F =
(
qx ,

q2x
h

+ gh2

2
,
qxqy
h

)T

, G=
(
qy,

qxqy
h

,
q2y
h

+ gh2

2

)T

S = (0,gh(Sox −S f x ),gh(Soy−S f y))
T

(2)

where h represents the water depth, qx =uh and qy =vh, with (u,v) the depth-averaged components
of the velocity vector u along the x and y coordinates respectively, g is the acceleration of the
gravity, Sox and Soy and S f x and S f y are the bed slopes and friction loss slopes, respectively,
along the coordinate directions.

Calling E=(F,G)T (1) becomes:

�tU+∇E(U)=S (3)

Several formulations for the friction slope term can be found in the literature [8]; in general they
can be written as

S f x =C1u

√
u2+v2

h�+1
, S f y =C1v

√
u2+v2

h�+1
(4)

That corresponds to the Glauker–Manning model with C1=n2, n being the friction coefficient and �
equal to 1

3 [15].

3. FINITE VOLUME MODEL

The finite volume scheme used is based on the integration of (3) in a volume or grid cell �:

�
�t

∫
�
U(x, y)d�+

∫
�

∇Ed�=
∫

�
Sd� (5)

and in the application of Gauss theorem to the second and third integrals. For that purpose, it is
assumed that the third integral can be reformulated as [16]∫

�
Sd�=

∮
��

T∗ndl (6)

where T∗ is a suitable numerical source matrix. This enables the following formulation:

�
�t

∫
�
U(x, y)d�+

∮
��

(E−T∗)ndl=0 (7)

When the domain is sub-divided in cells �i in a mesh fixed in time, (7) can also be applied to
each cell (Figure 1).
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Figure 1. Cell parameters.

Figure 2. Piecewise constant representation of the variable u.

3.1. First-order schemes

In first-order approach, the vector quantities U,E and z are uniform per cell (Figure 2). In particular,
the first integral in (7) can be approximated by:

�
�t

∫
�i

U(x, y)d�=�Ui

�t
Ai ∼= Un+1

i −Un
i

�t
Ai (8)

Calling Ui (x, y) the discrete value of the function U at cell i and assuming that each cell is
surrounded by a set of edges defined by the edge vertices ek , and the second integral in (7) can
be rewritten in a first-order approximation considering the fluxes affecting cell i as:

NE∑
k=1

∫ ek+1

ek
(�E(x, y)−T∗(x, y))knk dl=

NE∑
k=1

((�E−T∗)nl)nk (9)

with �Ek =E j −Ei and T∗
k to be defined.

The flux E=E(U) is a nonlinear function but a local linearization of the projection of this flux
onto a given direction is possible by means of the definition of an approximated flux Jacobian,
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J̃n,k [17] so that �E ·nk = J̃n,k�Uk , which can be made diagonal

J̃n,k = (̃PK̃P̃−1)k, K̃k = (̃P−1̃JnP̃)k (10)

with the help of an eigenvectors-based matrix

P̃k =[̃e1, ẽ2, ẽ3]k =
⎛⎜⎝

1 0 1

ũ+ c̃nx −c̃ny ũ− c̃nx

ṽ+ c̃ny c̃nx ṽ− c̃ny

⎞⎟⎠
k

(11)

and with eigenvalues

�̃1i,k =( ũ·n+ c̃ )i,k, �̃2
i,k =( ũ ·n)i,k, �̃3i,k =( ũ ·n− c̃ )i,k (12)

The problem can so be reduced to a 1D Riemann problem projected onto the direction n at each
cell edge [18]. Following a flux difference procedure, the difference in vector U across the grid
edge is projected onto the matrix eigenvectors basis

�Uk =U j −Ui =
3∑

m=1
(�̃e)mk (13)

with

�1,3i,k = �hi,k
2

± 1

2̃ci,k
(�qi,k− ũi,k�hi,k)ni,k, �2i,k = 1

c̃i,k
(�qi,k− ũi,k�hi,k)ni,kt (14)

Now the �E ·nk contributions at a cell edge k can be written as:

�E ·nk =
NE∑
k=1

J̃n,k�Uklk =
NE∑
k=1

3∑
m=1

( �̃
m
�m ẽm )klk (15)

The cell edge normal source term (T∗n)k is defined as

T∗n=

⎛⎜⎜⎝
0

−gh̃(�z+dnS f )nx

−gh̃(�z+dnS f )ny

⎞⎟⎟⎠ (16)

where the discretization of the friction term at a cell edge in (16) can, for instance, be based on [12]

dnS f,k =dnC1,k
ũn|̃u|
h̃�+1

(17)

where dn is the distance between cell centroids sharing edge k projected onto the n direction and
C1,k = 1

2 (C1,i +C1, j ).
The cell edge normal source term (T∗n)k can also be expressed in function of the eigen-

values and eigenvectors of J̃n,k , using the approximate matrix P̃k [17] in order to reach a unified
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formulation [19]:

T∗
knk =

N�∑
m=1

(� ẽ)mk lk, bk = P̃−1(T∗n)k (18)

with bk =[�1,�2,�3]Tk . The coefficients, using (16), are

�1k =− c̃k
2

(�z+dnS f )k, �3k =−�1k, �2=0 (19)

For the updating algorithm of a given cell i only the in-going contributions generated at the edges
are of interest. Finally, the first-order upwind scheme of (7) using a unified discretization gets the
form:

Un+1
i =Un

i −
NE∑
k=1

3∑
m=1

((̃�
−
�−�−)̃e)mk lk

�t

Ai
(20)

where �− = 1
2 (�−|�|) and �m− = 1

2 (1−sign(̃�
m
))�m . It must be stressed that this form is specially

built to ensure well-balanced solutions in both zero and non-zero velocity steady states. We shall
refer to this form of friction discretization as unified explicit discretization (UED).

Another formulation using a pointwise evaluation for the friction terms [20] can be used. Splitting
the source term S(U) as the sum of the bottom term Sb(U) and the roughness–friction term Sr (U)

S(U)=Sb(U)+Sr (U) (21)

The numerical scheme is based on an upwind discretization of Sb(U) and a separated discretization
of Sr (U). This can be summarized as follows:

U∗
i =Un

i −
NE∑
k=1

3∑
m=1

((̃�
−
�−�−

b )̃e)mk lk
�t

Ai
(22)

Un+1
i =U∗

i +Sr (Un
i )�t (23)

where the coefficients �−
b are as in (19) but only include the bottom slope. The second step as

in (23) represents a central explicit discretization of Sr (U). We shall refer to this form of friction
discretization as separated explicit discretization (SED).

Alternatively, it can be made implicit in order to reduce numerical instabilities by means of

hn+1
i =h∗

i , (hu)n+1
i =(hu)∗i

1

1+g(S f xu−1)∗i �t
(hv)n+1

i =(hv)∗i
1

1+g(S f yv−1)∗i �t
(24)

We shall refer to this form of friction discretization as separated implicit discretization (SID). It
is worth remarking that (22) supplied with either (23) or (24) is a formulation unable to provide
a correct non-zero velocity steady state as fluxes and source terms are not perfectly balanced.

3.2. Second-order schemes

The spatial accuracy of the scheme can be increased by using piecewise linear instead of piecewise
constant representations of the different conserved variables at the cells. Figure 3 is a sketch of
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Figure 3. Linear representation by cell.

this idea in the context of triangular grid cells. New values of the conserved variables must be
calculated at the cell edges by means of suitable limited procedures [21].

The MUSCL-Hancock scheme extended to systems of equations can be formulated as based
on two steps. In the first step the solution must be reconstructed using gradient vectors and then
intermediate values are re-calculated at a half time step at cell edges as:

Un+1/2
I,k =Un

I,k−
NE∑
k=1

(�Enk−T∗nk)nI i,k
lk
Ai

�t

2
(25)

The updated variable is constructed as

Un+1
i =Un

i −
NE∑
k=1

(�Enk−T∗nk)n+1/2,−
J I,k

lk
Ai

�t−
NE∑
k=1

(�Enk−T∗nk)n+1/2
I i,k

lk
Ai

�t (26)

where �En+1/2
J I,k =En+1/2

J,k −En+1/2
I,k and �En+1/2

I i,k =En+1/2
I,k −En

i,k , with an upwind part (first term)
and a central part (second term).

It is important to remark that, in order to enforce the good balance, when making the interpolation
planes it is necessary to interpolate over the water level surface to ensure equilibrium in still water
steady cases. More details can be found in [21]. The scheme as in (25) and (26) closely follows
the unified discretization leading to the first-order scheme (20).

Alternatively, it is also possible to build an extension to second order in which the friction terms
are discretized separately. This will be formulated in three steps as follows:

Un+1/2
I,k =Un

I,k−
NE∑
k=1

(�Enk−T∗
bnk)

n
I i,k

lk
Ai

�t

2
(27)

U∗
i = Un

i −
NE∑
k=1

(�Enk−T∗
bnk)

n+1/2,−
J I,k

lk
Ai

�t−
NE∑
k=1

(�Enk−T∗
bnk)

n+1/2
I i,k

lk
Ai

�t

Un+1
i = U∗

i +Sr (Un
i )�t

(28)

In (27) and (28) T∗
b makes reference only to the bottom variation source terms.
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Following an implicit formulation, the last step will be:

hn+1
i =h∗

i , (hu)n+1
i =(hu)∗i

1

1+ f ∗
i �t

(hv)n+1
i =(hv)∗i

1

1+ f ∗
i �t

(29)

It must be repeated that this formulation is unable to provide a correct steady state as fluxes and
source terms are not perfectly balanced.

4. FRICTION TERM STABILITY CONSTRAINTS

Explicit numerical schemes such as those presented in this work are conditionally stable. Courant–
Friedrichs–Lewy stated the restrictions on the time step size for a given mesh in case of homoge-
neous linear partial differential equations (CFL condition) [22]. For a generalization to the shallow
water equations in triangular grids see Murillo et al. [12]. In this section we are concerned with
the additional stability restrictions imposed by a dominant roughness on the numerical scheme
used.

According to Murillo et al. [12] the SED of the friction terms interferes with the CFL stability
condition. The following additional limit on the time step size for both first- and second-order
approaches when using a grid of a given mesh size is required:

�t = min{�tr ,�tCFL}

�tr = min

⎧⎨⎩
(
n2 |ui |
h�+1
i

g

)−1
⎫⎬⎭

i=1,Ncell

, �tCFL=min

{
Amin,k

maxm{|̃�mk |}lk

}
k=1,Nedge

(30)

Otherwise, the stability can only be ensured by refining the grid. Both possibilities offer stability
at a high computational cost. This will be shown in the numerical tests section. The SID of the
friction term is not time dependent. Therefore, it will not be considered in this section as it does
not require further time step restrictions than the CFL condition.

Although the UED of the friction term in (17) is associated with the cell edge, it is not necessary
to evaluate it using exclusively edge-averaged values of all quantities. In order to mitigate the
over-estimation of the friction slope in singular situations, instead of (17) another approach for the
modeling of the friction slope is proposed:

dnS f,k =dnC1,k
ũnumin

h�+1
max

(31)

with hmax=max{hi ,h j } and umin=min{|ui |, |u j |}. In order to avoid instabilities, the following
condition over the time step �tk was proposed [12]:

�t=min

{(
C1 |̃u|
h̃�+1

dnl

Amin,k
g

)−1

,
Amin,k

maxm{|̃�mk |}lk

}
k=1,Nedge

(32)

It is desirable to find a technique that avoids reducing the time step size below the CFL condition
in cases of high relative roughness in order to preserve the computational efficiency of the scheme.
For that reason, a technique that combines the best properties of the SID and of the UED is
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Figure 4. Adverse slope and flat surface level.

proposed in this work, ensuring conservation in all cases. This technique imposes a limit over the
size of the friction term when using the UED. When this limit is exceeded the SID of the friction
source term is enforced.

The search for the limiting value of discrete friction term stars by requiring that friction alone
is not able to change the sign of the discharge; hence, the following condition is enforced over the
unit discharge function:

(hiuin)n+1(hiuin)∗�0 (33)

where n is the normal unit vector to a grid edge.
Friction is dominant in cases of low water depth as shorelines. Such a situation is represented

by Figure 4(a), where a flat surface level develops over an adverse slope.
In this situation, the momentum equations are reduced to

�t (hu)+�x (hu2)+�y(huv) = −ghS f,x

�t (hv)+�x (huv)+�y(hv2) = −ghS f,y

(34)

or considering a normal direction n

�t (hun)+∇(hu(un))=−gh(S f x , S f y)
Tn (35)

Taking into account (35) the following can be written for a conservative finite volume scheme
across an edge k:

(huink)n+1=(huink)n−[�(hu(un))+gh̃(S f,kdn)]k lk
Ai

�t (36)

with h̃= 1
2 (hi +h j ). If the advance is discretized as in Figure 4(b), i being the dry cell (uni nk =

hn+1
i =0) and j the wet cell (unjnk�0,hnj�0), the following is expected:

un+1
i nk�0, hni �0 (37)

As our main goal is to avoid the possibility of discrete friction terms greater than discrete advection
terms, the following condition is required:

[(hu(un)) j − 1
2gh j (|S f,k |dn)]k�0 (38)

thus providing the required limit for the use of the upwind formulation.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1351–1377
DOI: 10.1002/fld



1360 J. MURILLO, P. GARCÍA-NAVARRO AND J. BURGUETE

Other cases that do not include the presence of wet/dry fronts are also of interest, but (38)
can be extended to give a practical rule. In order to consider the most restrictive situation, the
following limit is proposed:

gh̃k(|S f,k |dn,k)<hminu
2
min (39)

with hmin=min{hi ,h j }. When the inequality (39) does not hold, the SID is applied to both the
cells involved.

With this simple mechanism all instabilities likely to appear both in the advance front in flooding
events and in steady-state conditions are avoided.

5. NUMERICAL RESULTS

5.1. Circular dam break with friction

This test case of a circular dam break with friction in a flat squared domain was analyzed in
[12]. The domain size is 2000m×2000m and has been discretized in three triangular structured
meshes, M1, M2 and M3 using a characteristic length l equal to 80, 50 and 25m, respectively
(Figure 5) in order to evaluate the sensitivity of the friction term discretization strategies to the grid
refinement.

With the origin located at the center of the domain, the initial water depth elevation is given by

h(r, t=0)=
{
0.01m if r>800m

5m if r�800m
(40)

with r the radial distance from the center of the domain. The friction has been modeled considering
a Manning’s roughness parameter n=0.05sm−1/3.

Meshes M1 and M2 have been chosen to show the inefficiency of the CFL condition to control
numerical stability in this case. The computation, when based only on the CFL condition, blows
up at approximately t=20s when using UED and approximately at t=10s when using the SED
in mesh M1 as Figures 6(a) and 7(a) display. This numerical instability, generated by the friction
term, can be avoided by means of more restrictive time step conditions as said before. Figures 6(b)
for the UED and 7(b) for the SED show the stabilized solution when applying (32) and (30),
respectively. Alternatively, a stable solution is also provided by the proposed hybrid method as
6(c) and 7(c) show. Figure 8 represents the water surface level at t=40s from the four stabilized

Figure 5. Cell discretization.
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TIME STEP RESTRICTIONS FOR SHALLOW WATER SOLUTIONS 1361

Figure 6. 3D contour plot of the velocity module in mesh M1 at t=20s using: (a) the UED only with
the CFL condition; (b) the UED with the extra time step restriction (34); and (c) the hybrid method.

Figure 7. 3D contour plot of the velocity module in mesh M1 at t=10s using: (a) the SED only with
the CFL condition; (b) the SED with the extra time step restriction (31); and (c) the hybrid method.
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Figure 8. 3D contour plot of the water level surface in mesh M1 at t=40s using: (a) the UED with
the extra condition (34); (b) the SED with the extra time step restriction (31); (c) the SID with CFL

condition; and (d) the hybrid method.

Figure 9. Time step evolution in M1.

methods on mesh M1. Figure 8(a) is the UED with the extra condition (32), Figure 8(b) corresponds
to the SED with the extra time step restriction (31), Figure 8(c) is the SID with the CFL condition
and Figure 8(d) is the hybrid method. The most important feature is that all four provide the
same accuracy in this case. The important point is that there is a noticeable difference among the
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Figure 10. 3D contour plot of the velocity module in mesh M2 at t=15s using: (a) the UED only with
the CFL condition; (b) the UED with the extra time step restriction (34); and (c) the hybrid method.

methods in the size and uniformity of the time step size required to achieve stable results. This is
displayed in Figure 9.

The computation, when based only on the CFL condition blows up at approximately t=15s
when using UED and approximately at 10 s when using the SED in mesh M2 as Figures 10(a) and
11(a) display. Figure 10(b) for the UED and Figure 11(b) for the SED show the stabilized solution
when applying (32) and (30), respectively. The proposed hybrid method is shown in Figures 10(c)
and 11(c). Figure 12 represents the water surface level at t=40s from the four stabilized methods
on mesh M2. The same comments as those in the previous paragraph can be made. Figure 13
compares the size and uniformity of the time step size used by each method.

Figure 14 corresponds to the water surface levels calculated by the four stabilized schemes in
mesh M3 at time t=40s. It must be noted, however, that this mesh is fine enough to provide stable
solutions under the sole CFL condition with all the friction discretization techniques. Figure 15
displays the size and uniformity of the time step used by the UED with condition (32), SED with
condition (30), SID and hybrid techniques for comparison purposes.

5.2. Channel contraction

Despite the superiority shown by the friction SID in the previous test case as far as stability is
concerned, a further analysis of the relative performance of the methodologies in steady state is
necessary in order to evaluate their ability to produce a well-balanced solution. In order to see
the importance of the balance of the pressure, slope and friction terms and, at the same time,
be able to define a highly variable steady flow, a sloping (Sox =0.001m/m) rectangular open
channel with a sharp contraction in the middle is considered. The channel is 110m long and 10m
wide. A symmetrical contraction located 50m downstream the inlet boundary is assumed, reducing
the section width to 1m (Figure 16(a)). A constant discharge of 40m3/sg is set at the upstream
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Figure 11. 3D contour plot of the velocity module in mesh M2 at t=10s using: (a) the SED only with
the CFL condition; (b) the SED with the extra time step restriction (31); and (c) the hybrid method.

boundary and free flow is assumed at the downstream boundary. The simulation is performed
starting from dry bed initial conditions. A Manning friction coefficient n=0.03 is assigned to the
entire channel. The domain is discretized using two coarse triangular meshes, M1 and M2, of
characteristic length l=1m and 0.5m, respectively (Figure 16(b)). This case is interesting for our
purposes as it combines strong values of friction slope and strong variations in both the curvature
of the water level surface and of the velocity.

Figure 17(a) shows the time evolution of the total discharge at the middle of the narrow section
on both grids M1 (left) and M2 (right). Both the UED and the hybrid techniques provide an exact
value of water discharge in time while the purely implicit SID provides a value smaller than the
correct one. Figure 17(b) shows the evolution of the discharge in time at the free flowing outlet
section. Both the UED and the hybrid techniques provide an exact value of water discharge when
steady state is achieved and, as all the fluxes are exactly balanced, the water level surface remains
fixed in time. On the other hand, Figure 17(b) shows that the SID method produces oscillations in
the solution and is unable to generate a steady solution. This produces strong differences for the
water level surface and velocity distribution among the upwind or upwind-implicit techniques and
the implicit techniques.

Figure 18 shows the 3D view of the water level surface at time t=2000s obtained with all the
techniques on both grids M1 (left) and M2 (right). Figure 18(a) displays the results using the UED
technique. Figure 18(b) represents the results at the same time when using the SED technique
where the lack of symmetry in the numerical surface is noticeable on both grids. The same can be
said about the solution provided by the SID technique shown in Figure 18(c). Figure 18(d) and (e)
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Figure 12. 3D contour plot of the water level surface in mesh M2 at t=40s using: (a) the UED with
the extra condition (34); (b) the SED with the extra time step restriction (31); (c) the SID with CFL

condition; and (d) the hybrid method.

Figure 13. Time step evolution in M2.

shows the solution obtained with the hybrid approach based on a first-order scheme and a second-
order scheme, respectively. They are as accurate as the UED solution and have been calculated
using larger time steps of smoother distribution in time. Due to the coarseness of both grids and
the presence of source terms, the second-order approach does not show a superior accuracy in
this case.
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Figure 14. 3D contour plot of the water level surface in mesh M3 at t=40s using: (a) the UED with
the extra condition (34); (b) the SED with the extra time step restriction (31); (c) the SID with CFL

condition; and (d) the hybrid method.

Figure 15. Time step evolution in M3.

The evolution of the time step in this case, Figure 19, shows how the hybrid scheme overcomes
the lack of efficiency that arises when using the UED. The use of the pure upwind approach
demands a strong reduction in the time step. As a general rule must be applied to ensure stability in
all cases, this reduction can be excessive as this case makes plain. Figure 20 shows a detail of the
contour plot of the module of the velocity downstream the narrowing region when using the UED
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Figure 16. Computational domain (a) and cell discretization (b).

Figure 17. Water discharge time evolution: (a) at the narrow cross section and (b) at the outlet boundary
cross section. Left M1 grid and right M2 grid.

(Figure 20(a)) and the hybrid method (Figure 20(b)). Despite the differences in the magnitude of
the time step used in each case no differences appear when comparing both results.

5.3. Tsunami wave run-up

This test case has been taken from a benchmark problem of the Third International Workshop
on Long Wave Runup Models. It is a 1/400 scale laboratory experiment of the Monai run-up
(Okushiri Island, Japan) using a large-scale tank (205m long, 6m deep, 3.4m wide) at the Central
Research Institute for Electric Power Industry (CRIEPI) in Abiko, Japan. A benchmark test case
was defined focusing on a region near the shoreline where experimental data were measured. The
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Figure 18. Water level surface at t=2000s using: (a) the UED; (b) the SED; (c) the SID; (d) the hybrid
first-order; and (e) the hybrid second-order approach. Left M1 grid and right M2 grid.
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Figure 19. Time step evolution in time.

Figure 20. Module of the velocity at time t=2000s using (a) the UED (b) and the hybrid method.

detailed description as well as the experimental data are available [23]. According to the reported
bed material we have used a Gauckler–Manning number of n=0.01sm−1/3.

This test case has been used to show the numerical solutions obtained in a wide range of grid
refinement in order to demonstrate the robustness of the numerical techniques proposed.

Figure 21 represents the bathymetry used in the reduced scale model and the locations of three
gauging points (x=4.52m and y=2.196m, y=1.696m, y=1.196m, initially submerged) where
the evolution of the water depth was measured. The initial condition is still water with a constant
water level surface, h+z=0m. The incident wave from offshore appears in the boundary with
maximum water depth h=13.5cm (x=0), and is defined by means of the variation of the water
depth in time, Figure 22. In the laboratory model the other three boundaries were reflective vertical
sidewalls and so have been considered in our model.

For the simulation the domain has been discretized using triangular meshes shaped as shown
in Figure 5, using a length that varies from l=0.007m to l=0.224m. Table I summarizes the
resulting computational grids. Figures 23–26 show a sequence of the time evolution of the water
surface as the flood wave progresses over the coast. At time t=12s (Figure 23) the depression
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Figure 21. Contour plot of the bathymetry and location of the gauging points.

Figure 22. Water level surface time variation at the inlet boundary.

Table I. Number of cells and size cell in each mesh discretization.

M1 M2 M3 M4 M5 M6

Length l 0.007 0.014 0.028 0.056 0.112 0.224
Cells 762 048 190 512 47 432 11 956 2940 750
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Figure 23. 3D contour plot of the water level surface at time 12 s. The shoreline is moving backward.

Figure 24. 3D contour plot of the water level surface at time 17 s. The wave has reached the highest point
in the shoreline and has been reflected.

Figure 25. 3D contour plot of the water level surface at time 19 s. The flood
wave has covered the small island.
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Figure 26. 3D contour plot of the water level surface at time 22 s. The small island can be seen again.

wave makes the shoreline to move backward. At time t=17s (Figure 24) the inundation wave has
reached the highest point in the shoreline and has also been reflected. At time t=19s (Figure 25)
the flood wave has covered the small island. At time t=22s (Figure 26) the small island can be
seen again.

Figure 27 shows the computed time evolution of the water surface level at the three gauging points
together with the measurements provided, using meshes M1, M2 and M3. Figure 28 compares
the results using M4, M5 and M6. Figure 29 compares the solution using first- and second-order
approaches for mesh M1. There are no noticeable differences in the two numerical solutions.

6. CONCLUSIONS

In this work, the numerical modeling of the friction terms within the framework of 2D shallow
water upwind finite volume models has been analyzed and various existing forms of discretizing
the friction term have been discussed.

The starting point is that in cases of steady shallow water flow with non-zero velocity, the bed
slope source terms are not the only to be included in a unified discretization but all the terms
in the momentum equation must be balanced with the friction term in order to provide a good
equilibrium in the discrete solution. A first conclusion is that only the fully unified discretization
ensures a correct non-zero velocity steady state.

As for the stability constraints, when using an explicit upwind scheme both the unified (upwind)
and separated (pointwise) explicit discretization of the friction term require an additional time step
reduction in cases of dominant roughness. On the other hand, a separated implicit technique for
the friction term discretization is useful to relax the condition over the time step since it does not
introduce new stability constraints but is unable to ensure a well-balanced steady state.

A technique that combines the implicit pointwise and the explicit upwind friction discretization
has been proposed in order to achieve computationally efficient simulations by means of an adequate
criterion that is used to switch from one to the other while remaining under the sole control of the
CFL time step condition.

The numerical test cases selected have been useful to demonstrate these properties. The numer-
ical solutions obtained with the explicit unified discretization have been used as the reference
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Figure 27. Water level surface variation at the three gauging points using meshes M1, M2 and M3.
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Figure 28. Water level surface variation at the three gauging points using meshes M4, M5 and M6.
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Figure 29. Water level surface variation at the three gauging points using mesh
M1 with first- and second-order approach.
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solutions that can only be obtained at a relatively high computational cost. Our results highlight
the smoothness of the dynamically calculated time step size achieved by the proposed hybrid
technique that, at the same time, retains the accuracy and equilibrium properties of the pure unified
discretization. The proposed method can be adapted to both a first-order and a second-order explicit
scheme with the same properties.
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